Παρασκευή 7 Σεπτεμβρίου 2007

All about SETI


SETI (Search for Extra-Terrestrial Intelligence) is the name for a number of organized efforts to detect Extraterrestrial life. A number of efforts with "SETI" have been organized, including projects funded by the United States Government. The general approach of SETI projects is to survey the sky to detect the existence of transmissions from a civilization on a distant planet, an approach widely endorsed by the scientific community as hard science (see, e.g., claims in Skeptical Inquirer [1]).
There are great challenges in searching across the sky for a first transmission that could be characterized as intelligent, since its direction, spectrum and method of communication are all unknown beforehand. SETI projects necessarily make assumptions to narrow the search, and thus no exhaustive search has so far been conducted.


In 1960, Cornell University astronomer Frank Drake performed the first modern SETI experiment, named "Project Ozma", after the Queen of Oz in L. Frank Baum's fantasy books. Drake used a 25-meter-diameter radio telescope at Green Bank, West Virginia, to examine the stars Tau Ceti and Epsilon Eridani near the 1.420 gigahertz marker frequency. A 400 kilohertz band was scanned around the marker frequency, using a single-channel receiver with a bandwidth of 100 hertz. The information was stored on tape for off-line analysis. He found nothing of great interest.
The first SETI conference took place at Green Bank in 1961. The
Soviets took a strong interest in SETI during the 1960s and performed a number of searches with omnidirectional antennas in the hope of picking up powerful radio signals. TV host and American astronomer Carl Sagan and Soviet astronomer Iosif Shklovskii together wrote the pioneering book in the field, Intelligent Life in the Universe which was published in 1966 [2].
In the March
1955 issue of Scientific American, Dr. John Kraus, Professor Emeritus and McDougal Professor of Electrical Engineering and Astronomy at the Ohio State University, described a concept to scan the cosmos for natural radio signals using a flat-plane radio telescope equipped with a parabolic reflector. Within two years, his concept was approved for construction by the Ohio State University. With $71,000 total in grants from the National Science Foundation, construction of the first Kraus-style radio telescope began on a 20-acre plot in Delaware, Ohio. The 360-feet wide, 500-feet long, and 70-feet high telescope was powered up in 1963. This Ohio State University radio telescope was called Big Ear. Later, it began the world's first continuous SETI program, called the Ohio State University SETI program.
In
1971, the U.S. National Aeronautics and Space Administration (NASA) funded a SETI study that involved Drake, Bernard Oliver of Hewlett-Packard Corporation, and others. The resulting report proposed the construction of an Earth-based radio telescope array with 1,500 dishes known as "Project Cyclops". The price tag for the Cyclops array was $10 billion USD. Cyclops was not built.

e OSU SETI program gained fame on August 15, 1977 when Dr. Jerry R. Ehman, a project volunteer, witnessed a startlingly strong signal received by the telescope. He quickly circled the indication on a printout and scribbled the phrase “Wow!” in the margin. This signal, dubbed the Wow! signal, is considered by some to be the most likely candidate from an artificial, extraterrestrial source ever discovered, but it has not been detected again in several additional searches.




SETI@home is an extremely popular distributed computing project that was launched by U.C. Berkeley in May 1999, and is heavily sponsored by The Planetary Society. The project is run by director David Anderson and chief scientist Dan Werthimer. Any individual can become involved with SETI research by downloading and running the SETI@home software package, which then runs signal analysis on a "work unit" of data recorded from the central 2.5 MHz wide band of the SERENDIP IV instrument. The results are then automatically reported back to UC Berkeley. Over 5 million computer users in more than 200 countries have signed up for SETI@home and have collectively contributed over 19 billion hours of computer processing time. [4] [5] As of December 4, 2006 the Seti@Home grid operates at 257 TeraFLOPS, making it equivalent to the second fastest supercomputer on Earth.[6] Radio source SHGb02+14a is the most interesting signal analyzed to date.


The SETI Institute is now collaborating with the Radio Astronomy Laboratory at UC Berkeley to develop a specialized radio telescope array for SETI studies, something like a mini-Cyclops array. The new array concept is named the "Allen Telescope Array" (ATA) (formerly, One Hectare Telescope [1HT]) after the project's benefactor Paul Allen. Its sensitivity will be equivalent to a single large dish more than 100 meters in diameter. The array is being constructed at the Hat Creek Observatory in rural northern California. [7]
The full array is planned to consist of 350 or more Gregorian radio dishes, each 6.1 meters (20 feet) in diameter. These dishes are the largest producible with commercially available satellite television dish technology. The ATA was planned for a 2007 completion date, at a very modest cost of $25 million USD. The SETI Institute provides money for building the ATA while UC Berkeley designs the telescope and provides operational funding. Berkeley astronomers will use the ATA to pursue other deep space radio observations. The ATA is intended to support a large number of simultaneous observations through a technique known as "multibeaming", in which DSP technology is used to sort out signals from the multiple dishes. The DSP system planned for the ATA is extremely ambitious.
As of summer 2006, roughly 10 of the antennas are complete and 42 are under final construction. Although not yet capable of significant radio astronomy or SETI observations, the ATA has become a testbed for array technology, as needed for the
Square Kilometre Array, the US Navy, and DARPA. Completion of the full 350 element array will depend on funding and the technical results from the 42 element sub-array.


SETI Net is a private search system created by a single individual. It is closely affiliated with the SETI League and is one of the project Argus stations (DM12jw).
The SETI Net station consists of off the shelf, consumer grade electronics to minimize cost and to allow this design to be replicated as simply as possible. It has a 3 Meter parabola antenna that can be directed in azimuth and elevation, a LNA that covers the 1420 MHz spectrum a receiver to produce the wideband audio and a standard pc computer for control and for the detection algorithms.
The antenna can be pointed and locked to one sky location enabeling the system to integrate on it for long periods. Currently the
Wow! signal area is being monitored when it is above the horizon but all search data is collected and made available on the internet archive.
SETI Net started operation in the early 80’s as a way to learn about the science of the search and has developed several software packages for the amateur SETI community. It has provided an astronomical clock, a file manager to keep track of SETI data files, a spectrum analyzer optimized for amateur SETI, remote control of the station from the internet and other packages.


While most SETI sky searches have studied the radio spectrum, some SETI researchers have considered the possibility that alien civilizations might be using powerful lasers for interstellar communications at optical wavelengths. The idea was first suggested in a paper published in the British journal Nature in 1961, and in 1983 Charles Townes, one of the inventors of the laser, published a detailed study of the idea in the US journal Proceedings of the National Academy of Sciences. Most SETI researchers agreed with the idea. The 1971 Cyclops study discounted the possibility of optical SETI, reasoning that construction of a laser system that could outshine the bright central sun of a remote star system would be too difficult. Now some SETI advocates, such as Frank Drake, have suggested that such a judgment was too conservative.
There are two problems with optical SETI. The first problem is that lasers are highly "monochromatic", that is, they emit light only on one frequency, making it troublesome to figure out what frequency to look for. However, according to the
uncertainty principle, emitting light in narrow pulses results in a broad spectrum of emission, with the spread in frequency becoming higher as the pulse width becomes narrower, making it easier to detect an emission.

The other problem is that while radio transmissions can be broadcast in all directions, lasers are highly directional. This means that a laser beam could be easily blocked by clouds of interstellar dust, and Earth would have to cross its direct line of fire by chance to receive it.
Optical SETI supporters have conducted paper studies of the effectiveness of using contemporary high-energy lasers and a ten-meter focus mirror as an interstellar beacon. The analysis shows that an infrared pulse from a laser, focused into a narrow beam by a such a mirror, would appear thousands of times brighter than the Sun to a distant civilization in the beam's line of fire. The Cyclops study proved incorrect in suggesting a laser beam would be inherently hard to see.
Such a system could be made to automatically steer itself through a target list, sending a pulse to each target at a constant rate. This would allow targeting of all Sun-like stars within a distance of 100 light-years. The studies have also described an automatic laser pulse detector system with a low-cost, two-meter mirror made of carbon composite materials, focusing on an array of light detectors. This automatic detector system could perform sky surveys to detect laser flashes from civilizations attempting contact.
In the 1980s, two Soviet researchers conducted a short optical SETI search, but turned up nothing. During much of the 1990s, the optical SETI cause was kept alive through searches by
Stuart Kingsley, a dedicated British amateur living in the US state of Ohio.

Several optical SETI experiments are now in progress. A Harvard-Smithsonian group that includes Paul Horowitz designed a laser detector and mounted it on Harvard's 155 centimeter (61 inch) optical telescope. This telescope is currently being used for a more conventional star survey, and the optical SETI survey is "
piggybacking" on that effort. Between October 1998 and November 1999, the survey inspected about 2,500 stars. Nothing that resembled an intentional laser signal was detected, but efforts continue. The Harvard-Smithsonian group is now working with Princeton to mount a similar detector system on Princeton's 91-centimeter (36-inch) telescope. The Harvard and Princeton telescopes will be "ganged" to track the same targets at the same time, with the intent being to detect the same signal in both locations as a means of reducing errors from detector noise

The Harvard-Smithsonian group is now building a dedicated all-sky optical survey system along the lines of that described above, featuring a 1.8-meter (72-inch) telescope. The new optical SETI survey telescope is being set up at the
Oak Ridge Observatory in Harvard, Massachusetts.
The University of California, Berkeley, home of SERENDIP and SETI@home, is also conducting optical SETI searches. One is being directed by
Geoffrey Marcy, an extrasolar planet hunter, and involves examination of records of spectra taken during extrasolar planet hunts for a continuous, rather than pulsed, laser signal. The other Berkeley optical SETI effort is more like that being pursued by the Harvard-Smithsonian group and is being directed by Dan Werthimer of Berkeley, who built the laser detector for the Harvard-Smithsonian group. The Berkeley survey uses a 76-centimeter (30-inch) automated telescope and an older laser detector built by Werthimer.

Δεν υπάρχουν σχόλια: